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We analyze a pair of excitable FitzHugh-Nagumo elements, each of which is coupled repulsively. While the
rest state for each element is globally stable for a phase-attractive coupling, various firing patterns, including
cyclic and chaotic firing patterns, exist in an phase-repulsive coupling region. Although the rest state becomes
linearly unstable via a Hopf bifurcation, periodic solutions associated to the firing patterns is not connected to
the Hopf bifurcation. This means that the solution branch emanating from the Hopf bifurcation is subcritical
and unstable for any coupling strength. Various types of cyclic firing patterns emerge suddenly through
saddle-node bifurcations. The parameter region in which different periodic solutions coexist is also found.
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I. INTRODUCTION

Numerous chemical �1,2� and biological �3� phenomena
can be modeled in the framework of reaction-diffusion sys-
tems, which show an unexpectedly rich variety of dynamical
behaviors. In particular, excitability is a key property of
many physical systems and plays a fundamental role in
neural information processing and many other biological
systems.

A single neuron displays excitable behavior, in the sense
that a small perturbation to its quiescent state, i.e., a stable
stationary value of the cross membrane potential, can lead to
a large excursion of its potential. Such generation of a single
spike in the electrical potential across the neuron membrane
is a typical example of the excitable behavior. Excitable units
usually appear as constitutive elements of complex systems,
and can transmit excitation between them. The dynamics of
the system depends crucially on the properties of each unit
and on their interactions.

Periodic sequences of neural impulses, such as rhythmic
firing patterns produced by central pattern generators, are of
fundamental significance for the control of dynamic func-
tions of the body. It is great interest to understand the mecha-
nism of neural networks which cause and sustain such a wide
variety of periodic activities �4�. These complex firing pat-
terns including chaotic firings are modeled through the effect
of high dimensional dynamics of an individual element, in-
teraction of many neurons with spatial degree of freedom,
and time delayed coupling �5–8�. There are many studies for
excitable elements under external periodic stimuli, both ex-
perimentally and theoretically �9–13�, which show various
behaviors including phase-locking and chaotic behaviors. It
has been also studied for an ensemble of oscillatory or exci-
tatory elements interacting each other in the context of syn-
chronization and chaos �2,5–7,14�. Here, we focus on a
“minimal” model that consists of repulsively coupled two
excitable neurons. We report that this model produces and

sustains various firing patterns: there are many types of se-
quence of firing while only two neurons are involved in the
system.

For a system of excitable elements with diffusive
coupling that activates each other, the rest state is globally
stable: a finite perturbation to the rest state causes the
excitation of an element. The excitation of the element is
transmitted to the other element, then, the excitation of the
other element follows immediately. And the phase difference
between these excitations decreases due to the phase-
attractive interaction, which comes from the diffusive cou-
pling with positive coefficient between neurons. Then the
synchronization occurs and the elements return to the rest
state. Therefore we need external inputs so that dynamical
behaviors appear in excitable elements with phase-attractive
interaction.

The diffusive coupling with a negative coefficient has
been considered as the effect of phase-repulsive coupling on
two dimensional coupled FHN arrays �15�. The periodic fir-
ings are found in two neurons with excitatory and inhibitory
synaptic couplings �16–18�. In this paper, we consider a
rather mathematical model, a pair of excitable neurons with
phase-repulsively coupling. We find that a pair of simple
excitable elements shows various firing patterns including
chaotic firing when elements interact phase-repulsively.

II. MODEL

In the following, we study a pair of excitable neurons,
which are modeled by the FitzHugh-Nagumo �FHN� excit-
able elements �19,20�, given by the following equations:

du1

dt
= u1�u1 − ���1 − u1� − v1 +

K

2
�u2 − u1� ,

dv1

dt
= ��u1 − �v1� ,

du2

dt
= u2�u2 − ���1 − u2� − v2 +

K

2
�u1 − u2� ,

dv2

dt
= ��u2 − �v2� , �1�
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where �, �, �, and K are parameters, u1,2�t� is the activator,
and v1,2�t� is the inhibitor. The reason that we use the FHN
neuron is that the equations are “standard” and “minimal”
models for excitable systems in the following sense. The
model contains no more than two variables, and does not
describe a specific biochemical reaction: it can be used to
describe both neural and cardiac dynamics.

III. NUMERICAL ANALYSIS

A. Time evolution and firing diagram

Employing the following parameters: �=0.001, �=0.0,
each element is excitable for ��0, that is, a small but finite
perturbation to the rest state �u1 ,v1 ,u2 ,v2�= �0,0 ,0 ,0� leads
to a large excursion �an excitation�. Because of the excitable
nature of the units, the rest state is a globally stable solution
when the coupling is excitable, i.e., K�0. Indeed, stating
from the rest state with a finite perturbation, these two ele-
ments excite and immediately synchronize. After synchroni-
zation, there are no input signals from the other element
owing to diffusive coupling, and then, both elements imme-
diately return to the rest states.

For an phase-repulsive coupling K�0, however, periodic
excitations are observed in some parameter regions. A rich
variety of cyclic firing patterns is found numerically, as de-
picted in Fig. 1. To characterize these periodic solutions, we
introduce the following symbolic notation. In Fig. 1�a�, after
one element excites, the other element excites soon. After
this successive excitations, both elements stay at the quies-
cence state for a while. These excitations and quiescence are
repeated, and we symbolize this firing pattern as “AB-.”
Note that the code AB- and BA- correspond to the same
periodic solution due to the invariance under the exchange of
each element. In the same way, we characterize periodic so-
lutions in Fig. 1 as “AB-AB-BA-BA-,” “AB-BA-,” and
“ABA-BAB-.”

Precisely speaking, these symbolic patterns can
be obtained by the following criteria; when �ui�t�
=uc∧dui /dt�0� is satisfied, we consider the excitation
of element i occurs, and generate symbol A for i=1
or B for i=2. If ��du1,2 /dt=0�∧ �u2,1�0�� or
��du2,1 /dt=0�∧ �u1,2�0��, we regard the system as quies-
cence state and generate the symbol “-,” where uc=0.5 is a
threshold parameter. Even the simplest two-neuron model
shows the enormous complexity that arises from interaction
of nonlinear excitable elements. The firing pattern diagram in
�K ,��-parameter space is depicted in Fig. 2 from massive
numerical computations by using above coding criteria.

To see dynamical behaviors, we calculate the interspike
interval �ISI�, which is defined as follows. Integrating the Eq.
�1� numerically �we have used adaptive time step algorithm
so called the fifth-order Runge-Kutta-Fehlberg formula be-
cause there exist slow and first variables in the system�, we
have a sequence of time ti at which excitation of element 1
occurs. The time sequence of the excitations can be obtained
by T= �ti � �u1�ti�=0�∧ �du1�ti� /dt�0��. The ISI defined as the
sequence of �ti�= ti+1− ti is often used as a characterization of
neural activities �12�. After an initial transient disappears,

i.e., for i�1, the superimposed ISI as a function of the pa-
rameter K is plotted in Fig. 3. The ISI shows that the cyclic
firing bifurcates to irregular one at K=K� by decreasing the
coupling strength K. Further decreasing K, periodical firing
appears again. The chaotic firing regions in �K ,��-parameter
space are shown in Fig. 2.

B. Stability and bifurcation diagram

Next, we investigate the origin of these firing patterns in
the context of global bifurcation. In order to analyze the
origin of the periodic solutions, we will first examine the
stability of the rest state �u1 ,v1 ,u2 ,v2�= �0,0 ,0 ,0�. The
Jacobian matrix of the rest state is given by

�
−

K

2
− � �

K

2
0

− 1 − �� 0 0

K

2
0 −

K

2
− � �

0 0 − 1 − ��

	 , �2�

and its eigenvalues are

FIG. 1. Time evolution of a pair of FHN elements with phase-
repulsive coupling. Periodic oscillations appear below a critical
coupling strength K
−0.01. Typical periodic solutions are shown:
�a� K=−0.5: AB- firing pattern, �b� K=−0.093: AB-AB-BA-BA-,
�c� K=−0.012: AB-BA-, �d� K=−1.0: ABA-BAB-. The solid and
broken lines represent u1�t� and u2�t�, respectively. �=0.01,
�=0.001, �=0.0.
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	±
1 = �− � − �� ± �− 4� + �� − ���2�/2,

	±
2 = �− K − � − �� ± �− 4� + �K + � − ���2�/2.

This means that the rest state becomes unstable at critical
value KHP=−�−�� via the Hopf bifurcation �21�.

To see the bifurcation more precisely, the solution branch
that stems from the Hopf bifurcation �HP branch� is detected
and continued numerically by using AUTO software �22�, as
shown in Fig. 4. We find that the Hopf bifurcation is
subcritical. Furthermore, although the branch turns back at
KPD·SN=−0.003 994, the stability is not recovered. The nu-
merical computation of Floquet exponents shows that the
saddle-node and period-doubling bifurcations occur simulta-
neously at KPD·SN.The HP branch is always unstable for any
coupling strength. Thus the periodic solutions obtained by
numerical integration, as shown in Fig. 1, do not originate
from the subscritical Hopf bifurcation, which stems from the
rest state. And the HP branch does not directly connect to

these periodic solutions. Indeed, the unstable periodic solu-
tion that stems from the Hopf bifurcation point shows the
different firing pattern, antiphase excitation, which will be
coded as A-B-, depicted in Fig. 4�b�. The orbit starting from
the A-B- solution at K=−0.5 with a tiny perturbation is at-
tracted to the stable AB- pattern after a long transient.

We trace the branches of the solutions in Fig. 1 numeri-

FIG. 2. �Color� Firing pattern diagram in �K ,��-parameter space. The other parameter values are the same as in Fig. 1. The line
represents the Hopf-bifurcation line: KHP=−�. Left: each colored dot corresponds to different firing pattern, �a� red: ABA-; �b� blue:
ABA-BAB-; �c� green: AB-BA-; �d� orange: AB-; �e� yellow: AB-; �f� magenta: AB-BA-; and black: longer periodic or chaotic firing
patterns. Right: the magnification of left figure gives clear evidence for the existence of a variety of attractors. �a�� red: AB-BA-; �b�� blue:
AB�-�4BA�-�4; �c�� green: AB-; �d�� orange: AB�-�3BA�-�3; �e�� yellow: AB�-�4; �f�� magenta: AB�-�3; and black: longer periodic or chaotic
firing patterns.

FIG. 3. Interspike interval as a function of coupling strength K.
The chaotic firing appears after the accumulation of period dou-
blings K�
−0.642. Intermittent chaos occurs near KSN=−0.986
through the saddle-node bifurcation. Both critical values are consis-
tent with those obtained by AUTO.

FIG. 4. �a� Bifurcation diagram of the rest state �u1 ,v1 ,u2 ,v2�
= �0,0 ,0 ,0�. The vertical axis shows the L2 norm, L2

=1/T�0
T�i=1,2ui

2+vi
2dt, where T is the period of solution. The rest

state corresponding to L2=0 becomes unstable after the Hopf bifur-
cation at K=−0.01. The solid line represents stable rest solution.
The broken curve with L2�0 represents the solution branch ema-
nating from the bifurcation. The branch is always unstable for any
coupling strength K. �b� The unstable periodic solution on HP
branch at K=−0.5. The time scale is normalized by its period
T=1068.3. The lines and the other parameters are the same as in
Fig. 1.
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cally using AUTO. The schematic bifurcation diagram is de-
picted in Fig. 5. Decreasing K, the AB- solution becomes
unstable at Kd1
−0.572 88 where the first period-doubling
bifurcation occurs. Successive period-doubling
bifurcations occur at Kd2=−0.630 224, Kd3=−0.639 256,
Kd4=−0.641 297, and Kd5=−0.641 735. Below the accumu-
lation point of the period doublings, K�
−0.642, the chaotic
firing pattern is clearly observed. The parameter values ob-
tained by AUTO are consistent with those obtained through
the superimposed ISI �see Fig. 3�. The Feigenbaum constant
estimated from �Kd4−Kd3� / �Kd5−Kd4� is 4.659 82, and is
consistent with theoretical prediction 4.6692 �23�. Although
the interspike intervals are irregularly distributed below the
accumulation point, the spiking pattern, i.e., the order of the
excitations AB-, is preserved �Fig. 6�. Further decreasing K,
the ABA-BAB- solution appears via the saddle-node bifur-
cation at KSN=−0.9863.

C. Characterization of chaotic firing

The Lyapunov characteristic exponents �LCEs� play a
crucial role in the description of the behavior of dynamical
systems. We calculate LCEs as a function of K �see Fig. 7�.
The sum of the p largest LCEs measures the average rates of
divergence or convergence of p-dimensional phase-space
volume. A positive maximum LCE is obtained in the chaotic
region KSN=−0.9863�K�K�=−0.642, that is also consis-
tent with both the superimposed ISI �Fig. 3� and the global
bifurcation diagram obtained by AUTO �Fig. 5�. In addition, a
single positive LCE exists in the chaotic region, meaning
that hyperchaos does not observe, and Lyapunov dimension
D of the attractor is about D
2.0003 throughout the chaotic
region.

For coupling strength slightly larger than KSN, an intermit-
tent behavior is observed, where the time evolution is a mix-
ture of AB- and ABA-BAB- firing patterns. Since the ABA-
BAB- periodic solution disappears through the saddle-node
bifurcation at KSN, ABA-BAB- and AB- firing patterns cor-

respond to laminar and turbulent states, respectively �23�. We
plot the average time between bursts �AB- firing� as a func-
tion of K−KHP, and obtain the corresponding exponent as
−1/2 �Fig. 8�. Thus the intermittency is type I, and the result
is consistent with the bifurcation analysis.

D. Multistability and the existence of firings with long interval

Careful numerics shows that multiple stable
periodic solutions exist in the parameter region −0.094 00
�K�−0.093 22. Each solution is coded as AB-AB-BA-BA-
and AB-, respectively �see Fig. 2�. This asymptotic behavior
in the parameter region depends on an initial condition.

For smaller values of K, we find complicated firing pat-
terns, which consist of successive excitations of elements
and long intervals. AB�-�n and AB�-�nBA�-�n firing patterns
as shown in Fig. 9, for example, emanate via saddle-node
bifurcations, where code �-�n represents the long interval in
which a tiny antiphase oscillation is observed. The tiny os-
cillation will be corresponding to the subthreshold oscillation
�11� in neural activity. There are many stable periodic solu-

FIG. 5. Schematic bifurcation diagram obtained by AUTO. SN,
HP, PD, and BP indicate a saddle-node, a Hopf, a period doubling,
and a bifurcation point, respectively. Each stable branch corre-
sponding to periodic solution is not connected to HP branch that
emanates from the rest state via the subcritical Hopf bifurcation.
The vertical axis shows the L2 norm.

FIG. 6. The solutions at period-doubling bifurcations obtained
by AUTO. The time is normalized by its period. The period of each
solution is T=2407.42, 4827.59, and 9660.59 from top to bottom,
respectively.

FIG. 7. Lyapunov characteristic exponents as a function of K is
plotted. One positive Lyapunov exponent exists in the chaotic re-
gion, meaning that there is no hyperchaotic attracter.
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tions that have a long period near the Hopf-bifurcation line
KHP=−�−��. However, these solutions are not directly con-
nected to the Hopf bifurcation. The solutions suddenly ema-
nate near the bifurcation line. Moreover, each solution
branch is isolated from another, and is not connected to each
other. Although we cannot check all of the origins of these
periodic solutions, most of the solutions emanate suddenly
via saddle-node bifurcations.

IV. SUMMARY

We have found many firing patterns, for example, AB-,
AB-BA-, AB-AB-BA-BA-, and ABA-ABA-, in a pair of
FHN elements with phase-repulsive coupling. Through nu-
merical continuation of these solutions, we have shown that
these firing patterns correspond to periodic solutions mostly
emerged from the saddle-node bifurcations. The stability
analysis of the rest state shows that the Hopf bifurcation
occurs at KHP=−�−��. However, this Hopf bifurcation is
subcritical, and the solution branch that stems from the bi-
furcation is unstable. Furthermore, although the HP branch
turns back at K=KPD·SN via the saddle-node bifurcation, the
stability is not recovered because of the simultaneous occur-
rence of the period-doubling bifurcation.

It is also shown that a pair of excitable FHN neurons
exhibits the chaotic firing that appears after the accumulation
of the period-doubling bifurcations from the AB- solution.
This chaotic firing is terminated by the sudden emergence of
the periodic ABA-BAB- solution. Since the ABA-BAB- so-
lution appears through the saddle-node bifurcation, the cha-
otic firing shows a type I intermittent behavior near the criti-
cal point. In short, the simple excitable FHN elements can
potentially produce a wide variety of temporal patterns

through mutual inhibition. Although the model we have stud-
ied is much simpler than those of previous works �5–8�,
various dynamical behaviors have emerged. These facts shed
some light on a neural activity in the brain where periodic
behaviors are often observed.

In a pair of the FHN neurons, there are parameter regions
in which multistable periodic solutions exist. Preliminary
simulations of a large number of FHN excitable elements
show the coexistence of many stable periodic solutions with
fixed parameters. Starting from a state that is close to one of
these limit cycles, the system will go into the respective limit
cycle. Therefore the excitable elements with phase-repulsive
coupling may be used to store memories in limit cycles.
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